Given a graph with adjacency tables representing the edges between nodes, the task is to implement Dijkstra’s algorithm for a single-source shortest path using a priority queue in Java.
Given a graph and a source vertex in the graph, find the shortest path from the source to all vertices in a given graph.
Input : Source = 0
Output :
Vertex Distance from Source
0 0
1 4
2 12
3 19
4 21
5 11
6 9
7 8
8 14
We have already discussed the shortest path implementation of Dijkstra, such as Dijkstra’s adjacency matrix representation algorithm (time complexity O(v2)
The following is a Java implementation of Dijkstra’s algorithm using priority queues:
//Java implementation of Dijkstra's Algorithm
//using Priority Queue
import java.util.*;
public class DPQ {
private int dist[];
private Set<Integer> settled;
private PriorityQueue<Node> pq;
private int V; //Number of vertices
List<List<Node>> adj;
public DPQ( int V)
{
this .V = V;
dist = new int [V];
settled = new HashSet<Integer>();
pq = new PriorityQueue<Node>(V, new Node());
}
//Function for Dijkstra's Algorithm
public void dijkstra(List<List<Node>> adj, int src)
{
this .adj = adj;
for ( int i = 0 ; i <V; i++)
dist[i] = Integer.MAX_VALUE;
//Add source node to the priority queue
pq.add( new Node(src, 0 ));
//Distance to the source is 0
dist[src] = 0 ;
while (settled.size() != V) {
//remove the minimum distance node
//from the priority queue
int u = pq.remove().node;
//adding the node whose distance is
//finalized
settled.add(u);
e_Neighbours(u);
}
}
//Function to process all the neighbours
//of the passed node
private void e_Neighbours( int u)
{
int edgeDistance = - 1 ;
int newDistance = - 1 ;
//All the neighbors of v
for ( int i = 0 ; i <adj.get(u).size(); i++) {
Node v = adj.get(u).get(i);
//If current node hasn't already been processed
if (!settled.contains(v.node)) {
edgeDistance = v.cost;
newDistance = dist[u] + edgeDistance;
//If new distance is cheaper in cost
if (newDistance <dist[v.node])
dist[v.node] = newDistance;
//Add the current node to the queue
pq.add( new Node(v.node, dist[v.node]));
}
}
}
//Driver code
public static void main(String arg[])
{
int V = 5 ;
int source = 0 ;
//Adjacency list representation of the
//connected edges
List<List<Node>> adj = new ArrayList<List<Node>>();
//Initialize list for every node
for ( int i = 0 ; i <V; i++) {
List<Node> item = new ArrayList<Node>();
adj.add(item);
}
//Inputs for the DPQ graph
adj.get( 0 ).add( new Node( 1 , 9 ));
adj.get( 0 ).add( new Node( 2 , 6 ));
adj.get( 0 ).add( new Node( 3 , 5 ));
adj.get( 0 ).add( new Node( 4 , 3 ));
adj.get( 2 ).add( new Node( 1 , 2 ));
adj.get( 2 ).add( new Node( 3 , 4 ));
//Calculate the single source shortest path
DPQ dpq = new DPQ(V);
dpq.dijkstra(adj, source);
//Print the shortest path to all the nodes
//from the source node
System.out.println( "The shorted path from node :" );
for ( int i = 0 ; i <dpq.dist.length; i++)
System.out.println(source + " to " + i + " is "
+ dpq.dist[i]);
}
}
//Class to represent a node in the graph
class Node implements Comparator<Node> {
public int node;
public int cost;
public Node()
{
}
public Node( int node, int cost)
{
this .node = node;
this .cost = cost;
}
@Override
public int compare(Node node1, Node node2)
{
if (node1.cost <node2.cost)
return - 1 ;
if (node1.cost> node2.cost)
return 1 ;
return 0 ;
}
}
The output is as follows:
The shorted path from node :
0 to 0 is 0
0 to 1 is 8
0 to 2 is 6
0 to 3 is 5
0 to 4 is 3